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Abstract 

 

This paper presents a comparative evaluation of methods for computing self-motion manifolds in redundant robotic 

manipulators. Redundant robots have more degrees of freedom than required to perform their task. We consider a 5-

degree-of-freedom robot tasked with reaching three-dimensional positions, which results in two degrees of redundancy. 

This implies that the inverse kinematic problem of the robot has infinitely many solutions that lie on two-dimensional 

self-motion manifolds. Computing these manifolds is of paramount importance for planning feasible and globally optimal 

motions. In this paper, we compare different methods for computing these manifolds: cellular automata, continuation and 

sampling-based methods. Our results show that the established techniques like continuation and sampling provide better 

performance. We further discuss the individual strengths and limitations of each approach. By offering this balanced 

evaluation, our study aims to guide researchers and users in selecting appropriate tools for analysing redundancy in 

industrial robotic systems.  

 

Keywords: Redundant robots; Self-motion manifolds; Redundancy resolution; Robotics;  

 

 

1. Introduction 

 

Kinematic redundancy arises when a robotic manipulator possesses more degrees of freedom (DOF) than are strictly 

required to accomplish a given task. This property, common in many industrial and collaborative robots, enables the 

system to exploit its extra DOF to achieve secondary objectives such as obstacle avoidance, singularity evasion, or energy 

minimization [1]. However, this flexibility comes at the cost of increased computational complexity: the inverse 

kinematics problem (IKP) for redundant manipulators is underdetermined, admitting infinitely many solutions for a given 

end-effector position. 

 

Redundancy resolution methods are typically classified into velocity-level and position-level approaches. Velocity-

level methods, such as those based on the pseudoinversion of the Jacobian [2] or optimization-based schemes [3], provide 

local solutions by integrating joint velocities to follow a desired task trajectory. While effective for real-time control, 
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these methods are inherently local and may fail to capture the global structure of the solution space, often resulting in 

suboptimal or non-cyclic motions [4]. 

 

In contrast, position-level methods aim to characterize the entire set of solutions for a given task. Self-motion 

manifolds [5] and Feasibility Maps [6] are examples of approaches that describe the infinite set of solutions. Among 

these, self-motion manifolds (SMMs) are of particular interest: they are surfaces in the joint space along which the end-

effector position remains constant. The computation and analysis of SMMs are crucial for applications requiring global 

optimality, cyclic motions, or exhaustive feasibility analysis: capabilities that are especially valuable in industrial contexts 

such as welding, painting, or assembly, where repeatability and reliability are paramount. 

 

Several methods have been proposed for computing self-motion manifolds. Continuation methods systematically trace 

the solution set from an initial configuration. The original continuation approach, employed by [7], incrementally 

constructs the manifold by following the Jacobian's null space, which is tangent to the manifold at each point, to predict 

subsequent points. These points are then corrected using the Newton-Raphson method, ensuring convergence to the 

manifold. This technique allows for the computation of one-dimensional self-motion curves for robots with a single degree 

of redundancy. Later, [8] generalized the method to higher-dimensional manifolds by constructing an atlas of local 

parameterizations (charts) that collectively cover the manifold. 

 

Sampling-based methods typically identify the self-motion manifold in two stages: first, they sample a set of valid 

joint configurations to generate a point cloud that approximates the manifolds, and then cluster these points to identify 

disjoint manifolds. Ref. [9] proposed sampling the point cloud by randomly selecting joint configurations and checking 

whether they map (via forward kinematics) sufficiently close to the desired task value. [10] presented a more systematic 

approach by sweeping every possible combination of redundant joint variables over their feasible range and solving the 

remaining joint variables to satisfy the task constraint. This method avoids computing points that would later be discarded, 

as the resulting points are guaranteed to belong to the manifold. 

 

Other strategies for SMM computation have also been explored. For instance, [11] proposed a cellular automata-based 

method that discretizes the joint space and iteratively updates the state of each cell. [12] introduced a swarm intelligence 

approach, specifically the artificial bee colony algorithm, to sequentially trace the SMMs, similarly to continuation 

methods, without requiring the Jacobian matrix. Multi-objective optimization has also been proposed [13] to compute the 

manifolds, and a branch-and-bound method [14] systematically shrinks the search space to exclude infeasible regions. 

 

Despite the variety of available techniques, comprehensive comparisons of their performance and suitability for 

practical industrial problems remain limited in the literature. This paper addresses this gap by evaluating and comparing 

several representative methods for computing two-dimensional self-motion manifolds in a 5-DOF robot. By analysing 

their strengths and limitations, we aim to provide guidance for researchers and practitioners in selecting appropriate tools 

for redundancy analysis and exploitation in industrial robotic systems. 

 

The remainder of the paper is organized as follows: Section 2 presents the inverse kinematics of the studied 5-DOF 

robot; Section 3 describes the method presented in [10] for computing self-motion manifolds by sweeping two redundant 

joint angles; Section 4 presents the higher-dimensional continuation method [8]; Section 5 presents a discussion of the 

results obtained from the different methods; and Section 6 concludes the paper and outlines future work. 

 

2. Inverse Kinematics of the Studied 5-DOF Robot 

 

The robot studied in this paper is a 5-DOF serial robot defined by the Denavit-Hartenberg (DH) parameters defined 

in Table 1. The robot and DH frames are shown in Fig. 1. This robot is taken from an example presented in [11]. 

 

Transformation between frames 𝑖 − 1 → 𝑖 𝜃𝑖 (rad) 𝑑𝑖 𝑎𝑖 (m) 𝛼𝑖 (rad) 

0 → 1 𝑞1 0 0 𝜋 2⁄  

1 → 2 𝑞2 0 0.25 0 

2 → 3 𝑞3 0 0.25 𝜋 2⁄  

3 → 4 𝑞4 0 0.25 0 

4 → 5 𝑞5 0 0.25 0 

 

Table 1. Denavit-Hartenberg (DH) parameters of the studied 5-DOF robot. 
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Fig. 1. (a) Robot in the reference pose. (b) Robot in a more arbitrary pose defined by: 𝑞1 = 20
∘, 𝑞2 = 30

∘, 𝑞3 = 10
∘, 

𝑞4 = 30
∘, and 𝑞5 = 45

∘. 

 

By multiplying the DH matrices from the fixed base of the robot to its end-effector, we obtain the homogeneous 

transformation matrix that represents the position and orientation of the end-effector with respect to the fixed base 

frame: 

 

𝐓 = 𝐓0 1 𝐓1 2 𝐓2 3 𝐓3 4 𝐓4 5, (1) 

 

where the DH matrix between consecutive frames 𝑖 − 1 and 𝑖 is: 

 

𝐓𝑖−1
𝑖 = [

cos 𝜃𝑖 −cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 sin 𝜃𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝛼𝑖 cos 𝜃𝑖 −sin 𝛼𝑖 cos 𝜃𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

]  

 

(2) 

 

In this paper, we are interested only in the position coordinates of the end-effector, neglecting its orientation. The 

position of the end-effector is taken from the last column of 𝐓 as computed in (1), which has the following symbolic 

expression: 

 

𝑥 =
1

4
[cos𝑞1 · (𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2) + 𝑏 · sin𝑞1]   

 

𝑦 =
1

4
[sin𝑞1 · (𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2) − 𝑏 · cos𝑞1]  (4) 

𝑧 =
1

4
[𝑎 · sin(𝑞2 + 𝑞3) + sin𝑞2],   

 

where 𝑎 = 1 + cos𝑞4 + cos(𝑞4 + 𝑞5) and 𝑏 = sin𝑞4 + sin(𝑞4 + 𝑞5). 
 

The inverse kinematic problem consists in determining the values of the joint coordinates 𝐪 = [𝑞1, … , 𝑞5]
𝑇 to achieve 

a desired position 𝐩 =  [𝑥, 𝑦, 𝑧]. Since we are using five angles to control the position of only three coordinates, the robot 

is kinematically redundant, that is, there are two redundant degrees of freedom to control the position of the end-effector. 

The inverse kinematic problem in that case is underdetermined: there are three equations from which to solve five 

unknowns. For a given 𝐩, the solution set of these equations in the space (𝑞1, … , 𝑞5) will generically be a surface, or a set 

of disjoint surfaces. These surfaces are the self-motion manifolds (SMMs): moving the angles [𝑞1, … , 𝑞5] along these 

surfaces does not modify the position 𝐩 of the end-effector. 

 

Since we cannot solve all joints 𝐪 = [𝑞1, … , 𝑞5]
𝑇 from (3) for a given 𝐩 =  [𝑥, 𝑦, 𝑧], we will solve [𝑞1, 𝑞2, 𝑞3] in terms 

of [𝑞4, 𝑞5], which will remain as free parameters in the following. Note that, for given values of [𝑞4, 𝑞5], the values of 
[𝑎, 𝑏] in (3) are known. 
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To solve this system of equations assuming that [𝑞4, 𝑞5] are known, first we note that the first two equations are 

linear in cos 𝑞1 and sin 𝑞1: 

 

[
𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2 𝑏

−𝑏 𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2
] [
cos𝑞1
sin𝑞1

] = [
𝑥
𝑦] 4, (4) 

 

from which we solve the sine and cosine of 𝑞1: 

 

[
cos𝑞1
sin𝑞1

] = [
𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2 𝑏

−𝑏 𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2
]
−1

[
𝑥
𝑦] 4  (5) 

[
cos𝑞1
sin𝑞1

] =
1

𝐷
[
𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2 −𝑏

𝑏 𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2
]

⏟                                  
𝐏

[
𝑥
𝑦] 4, 

(6) 

 

with 𝐷 = det (𝐏) = (𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2)
2 + 𝑏2. We can eliminate the unknown 𝑞1 by imposing that cos2𝑞1 +

sin2𝑞1 = 1, which yields: 

 

cos2𝑞1 + sin
2𝑞1 = [

cos𝑞1
sin𝑞1

]
𝑇

[
cos𝑞1
sin𝑞1

] =
16

𝐷2
[
𝑥
𝑦]
𝑇

𝐏𝑇𝐏⏟

[
𝐷 0
0 𝐷

]

[
𝑥
𝑦] =

16

𝐷
(𝑥2 + 𝑦2) = 1  

(7) 

 

That is: 

 

16(𝑥2 + 𝑦2) = 𝐷 = (𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2)
2 + 𝑏2  (8) 

16(𝑥2 + 𝑦2) − 𝑏2 = (𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2)
2  (9) 

±4√(𝑥2 + 𝑦2) − 𝑏2 = 𝑎 · cos(𝑞2 + 𝑞3) + cos𝑞2  (10) 

 

Now, (5) can be written as: 

 

4𝑧 = 𝑎 · sin(𝑞2 + 𝑞3) + sin𝑞2  (11) 

 

Equations (10) and (11) constitute a system of two equations and two unknowns. More importantly: the form of these 

equations is identical to those of a 2R planar serial arm, as demonstrated in Fig. 2. Thus, 𝑞2 and 𝑞3 can be solved by 

solving the inverse kinematic problem of such equivalent 2R arm, which is a straightforward solution that can be found 

in any textbook on robot kinematics. The inverse kinematics of the 2R arm is summarized in Fig. 2, which yields two 

possible solutions for a given position of its end-effector [𝑥’, 𝑦’]. Since there are two possible values of 𝑥’ due to the “±” 

as noted in Fig. 2, the system formed by (10) and (11) has up to four possible solutions for (𝑞2, 𝑞3). For each solution, a 

unique value of sin 𝑞1 and cos 𝑞1 is obtained from (6), which yields a unique corresponding value of 𝑞1 =
atan2 (sin 𝑞1 , cos 𝑞1), completing the resolution of the inverse kinematic problem of the 5-DOF robot of Fig. 1 for a 

given pair [𝑞4, 𝑞5] and a desired position 𝐩 =  [𝑥, 𝑦, 𝑧]. 
 

       
 

Fig. 2. Resulting system of equations, equivalent to that of a 2R planar arm. 
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3. Computing self-motion manifolds by sweeping two redundant joint angles 

 

The sweeping method for computing self-motion manifolds, introduced by [10], systematically explores the feasible 

ranges of 𝑟 redundant joint variables, where 𝑟 = 𝑛 − 𝑚 is the degree of redundancy, 𝑛 is the number of DOFs, and 𝑚 is 

the dimension of the task. For each discretized values of these variables, the remaining 𝑛 − 𝑟 joint variables are solved to 

satisfy the task and constraints. After sweeping through the entire range, the resulting point cloud is clustered in order to 

identify disjoint self-motion manifolds. 

 

The algorithm to compute SMMs via sweeping redundant joints proceeds as follows, and is illustrated in Fig. 3, which 

corresponds to the SMMs of the 2R arm of Fig. 2 for task value 𝑦′ = 1 m, and an arbitrary task constraint.  

1. Discretize each of the 𝑟 redundant joints into 𝑁 points within their feasible ranges, forming a grid of 

𝑁𝑟 combinations. 

2. For each grid point, solve the inverse kinematics for the remaining 𝑛 − 𝑟 joints to satisfy the task constraint. 

3. Collect all valid solutions to construct a point cloud representing the self-motion manifolds.  

4. Cluster the point cloud to identify disjoint self-motion manifolds. 

 

 
 

Fig. 3. Illustration of the sweeping method for computing self-motion manifolds of the 2R arm with 𝑦′ = 1 m. 

 

Let us consider the 5-DOF robot in Fig. 1 to further exemplify the algorithm. It has 𝑛 = 5 joints and 𝑚 = 3 task 

dimensions (3D end-effector position), yielding 𝑟 = 𝑛 −𝑚 = 2 redundant joints. We select the last two joints, (𝑞4, 𝑞5), 
to sweep over their feasible ranges. Each joint 𝑖 is discretized into a set 𝐐𝑖  = {𝑞𝑖𝑚𝑖𝑛 , 𝑞𝑖𝑚𝑖𝑛 + ∆𝑞𝑖 , ⋯ , 𝑞𝑖𝑚𝑎𝑥}, where ∆𝑞𝑖 =

 (𝑞𝑖𝑚𝑎𝑥 − 𝑞𝑖𝑚𝑖𝑛) / (𝑁 −  1), and 𝑁 is the number of discretization points per joint. The Cartesian product 𝐐𝑟 = 𝐐4 × 𝐐5 

yields a grid of 𝑁2 pairs (𝑞4, 𝑞5). 
 

For each pair (𝑞4, 𝑞5), the inverse kinematics are solved for all possible solutions of the remaining joints (𝑞1, 𝑞2, 𝑞3), 
as detailed in Section 2. Solutions are checked for validity (e.g., joint limits, collision avoidance) and retained if feasible. 

The resulting point cloud accurately represents the self-motion manifolds at the specified end-effector position. 

 

Since the point cloud may contain points from multiple disjoint self-motion manifolds, a clustering algorithm is 

applied to distinguish them. Specifically, we use the DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) algorithm [15], which is well-suited for identifying clusters of arbitrary shape without requiring the number of 

clusters a priori. DBSCAN groups closely packed points and returns the identified clusters as disjoint self-motion 

manifolds, as Fig. 3(c) illustrates. 

 

4. Computing self-motion manifolds by continuation 

 

3.1. One-dimensional self-motion manifolds (curves) 

 

The basis for the continuation method for computing self-motion manifolds was first introduced by [7]. Starting from 

an initial robot configuration, this approach generates a one-dimensional self-motion curve by iteratively advancing along 

the null space of the Jacobian, which is tangent to the manifold at each point. Fig. 4 illustrates this process.  
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Fig. 4. Illustration of the continuation method for computing 1D self-motion manifolds. 

 

The logic of the algorithm can be summarized as follows: 

1. Compute a seed configuration 𝐪0 that lies on the SMM, if not already provided, and initialize 𝐪𝑐 ← 𝐪0. 

2. Determine an orthonormal basis 𝚽𝑐  for the null space of the Jacobian matrix 𝐉 at 𝐪𝑐. 
3. Take a step of size 𝜌 along 𝚽𝑐, which is tangent to the SMM at 𝐪𝑐, to obtain the candidate point 𝐪̂𝑐+1. 

4. Project 𝐪̂𝑐+1 back onto the SMM by means of Newton’s method, yielding the corrected point 𝐪𝑐+1. 

5. Repeat steps 2-4, updating the current configuration 𝐪𝑐 ← 𝐪𝑐+1, until the entire manifold is traced. 

 

The Jacobian matrix 𝐉(𝐪) is the matrix of partial derivatives of the task function 𝐟(𝐱, 𝐪) with respect to the joint 

variables 𝐪: 

 

𝐉(𝐪) =

[
 
 
 
𝜕𝑓1

𝜕𝑞1
⋯

𝜕𝑓1

𝜕𝑞𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑞1
⋯

𝜕𝑓𝑚

𝜕𝑞𝑛]
 
 
 

   (12) 

 

To obtain an orthonormal basis 𝚽𝑐  for the null space, the Singular Value Decomposition (SVD) of the Jacobian is 

used: 

 

𝐉(𝐪) = 𝐔𝐒𝐕𝑇, (13) 

 

where 𝐔 and 𝐕 are orthogonal matrices and 𝐒 is a diagonal matrix of singular values. The null space is spanned by the 

𝑛 − 𝑚 last columns of 𝐕. 

 

After taking a step, the candidate configuration 𝐪̂𝑐+1 must be corrected back onto the SMM defined by 𝐟(𝐱, 𝐪) = 𝟎. 

This is accomplished by using the Newton-Raphson method, which iteratively updates 𝐪̂𝑐+1 as follows: 

 

𝐪̂𝑐+1 ← 𝐪̂𝑐+1 − 𝐉(𝐪̂𝑐+1)
† 𝐟(𝐱, 𝐪̂𝑐+1), (14) 

 

where 𝐉(𝐪̂𝑐+1)
† denotes the Moore-Penrose pseudoinverse of the Jacobian. This process is repeated until convergence, 

i.e., until ‖𝐉(𝐪̂𝑐+1)
† 𝐟(𝐱, 𝐪̂𝑐+1)‖ is below a specified threshold 𝜀. At convergence, 𝐪̂𝑐+1 lies on the manifold, and 𝐪𝑐+1 is 

set to this value. 

 

3.2. Higher-dimensional self-motion manifolds 

 

The continuation method can be generalized to compute higher-dimensional self-motion manifolds, as described by 

[8]. We have based our approach in the interpretation by [16]. The central idea is to build an atlas of local 

parameterizations (charts) that collectively cover the manifold. The main concepts and steps are outlined below, and 

illustrated in Fig. 5. 
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Fig. 5. Illustration of the continuation method for computing 2D self-motion manifolds. (b) is a cross-section defined by 

the plane represented in (a) in dash-and-dotted orange. 

 

3.2.1. Charts 

 

Given a point 𝐪𝑐 on the manifold, a chart 𝐶𝑐 provides a local parametrization in the neighbourhood of 𝐪𝑐. This is 

achieved via a mapping 𝜑: ℝ𝑟 → ℝ𝑛, which maps local 𝑟-dimensional coordinates in the chart to 𝑛-dimensional joint 

coordinates, with 𝜑(𝟎) = 𝐪𝑐. 
 

Following [7] and in analogy to Section 4.1, the mapping 𝐪𝑖 = 𝜑𝑐(
𝑐𝐫𝑖) is constructed in two steps: 

 

1. Given a local coordinate vector 𝑐𝐫𝑖 = [𝜌1, … , 𝜌𝑟] (expressed relative to chart 𝐶𝑐, denoted by superscript 𝑐), a 

candidate point 𝐪̂𝑖 in the joint space is computed by stepping in the tangent space: 

 

𝐪̂𝑖 = 𝐪𝑐 +𝚽𝑐  
𝑐𝐫𝑖, (15) 

 

where 𝚽𝑐  is an orthonormal basis for the tangent space of the manifold at 𝐪𝑐. 
 

2. The candidate 𝐪̂𝑖 is then projected onto the manifold by solving 

 

𝐟(𝐱, 𝐪̂𝑖) = 𝟎  (16) 

 

using the Newton-Raphson method as described in Section 4.1, yielding at convergence the corrected point 𝐪𝑖. 
 

Note that our approach differs slightly from the original method, which solves the following system of equations for 

correcting 𝐪̂𝑖: 
 

{
𝐟(𝐱, 𝐪̂𝑖) = 𝟎

𝚽𝑐
𝑇(𝐪𝑖 − 𝐪̂𝑖) =  0

  (17) 

 

This formulation ensures that the correction step projects orthogonally to the tangent space 𝚽𝑐  of the manifold at 𝐪𝑐. 
In contrast, our approach (by employing the Moore-Penrose pseudoinverse, which minimizes the change in 𝐪̂𝑖), updates 

the candidate configuration by moving it towards the manifold along a direction perpendicular to the manifold (as it is 

the least-norm solution) at the convergence point 𝐪𝑖, i.e., perpendicular to 𝚽𝑖 . 
 

The inverse mapping 𝜙𝑐: ℝ
𝑛 → ℝ𝑟, which recovers local chart coordinates from a joint configuration, is given by: 

 

 𝑐𝐫𝑖 = 𝜙𝑐(𝐪𝑖) = 𝚽𝑐
𝑇(𝐪𝑖 − 𝐪𝑐), (18) 

 

which projects the joint configuration 𝐪𝑖 onto the tangent space 𝚽𝑐 . 
 

3.2.2. Atlas of charts 

 

A atlas is a coordinated collection of charts that together cover the entire manifold. An atlas 𝐴 is defined as a set of 

charts 𝐴 = {𝐶1, 𝐶2, … }, where each chart 𝐶𝑐 is centred at a point 𝐪𝑐 (i.e., 𝜑𝑐(𝟎) = 𝐪𝑐), as described in Section 3.2.1. 
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In [8]'s algorithm, each chart 𝐶𝑐 is associated with an 𝑟-dimensional polytope 𝒫𝑐  that defines its region of validity. 

This polytope is initially a hypercube enclosing an 𝑟-dimensional hyperball ℬ𝑐  of radius 𝜎 centered at 𝐪𝑐, as illustrated 

in Fig. 5. 

 

A chart is considered bounded only when every vertex of its polytope 𝒫𝑐  lies within the hyperball ℬ𝑐 . To bound the 

chart 𝐶𝑐, the algorithm iteratively selects a vertex 𝐯 of 𝒫𝑐  that is outside ℬ𝑐 , and generates a local coordinate 𝑐𝐫𝑖 in chart 

𝐶𝑐 as: 

 

 𝑐𝐫𝑖 = 𝛼𝜎
𝐯

‖𝐯‖
, (19) 

 

where 𝛼 is a scaling factor (initially 1) ensuring 𝑐𝐫𝑖 lies within ℬ𝑐 . 
 

This local coordinate is mapped to joint space using 𝜑𝑐, yielding 𝐪𝑖 = 𝜑𝑐(
𝑐𝐫𝑖). The validity of 𝐪𝑖 is checked by two 

conditions: 

 
‖𝐪𝑖 − 𝐪𝑐 +𝚽𝑐  

𝑐𝐫𝑖‖ ≤ 𝜀        (C1) (20) 

‖𝚽𝑐
𝑇𝚽𝑖‖ ≥ cos 𝜃                     (C2) (21) 

 

Condition (C1) controls the deviation from the tangent space, while (C2) ensures the angle between the tangent spaces 

at 𝐶𝑐 and 𝐶𝑖 is not too large, which would indicate the need for more charts in regions of high curvature. 

 

If both conditions are satisfied, 𝐪𝑖 is used to initialize a new chart 𝐶𝑖 with its own local parameterization 𝜑𝑐 and tangent 

space 𝚽𝑖 . If not, 𝛼 is reduced by a user-defined factor 𝛽 (e.g., 𝛽 = 0.8), and the process repeats until a valid 𝐪𝑖 is found 

or 𝛼 reaches a minimum threshold. Starting with a larger 𝛼 (i.e., 1) allows the algorithm to attempt larger charts before 

subdividing, improving coverage efficiency. 

 

When a new chart 𝐶𝑖 is created, the algorithm coordinates neighbouring charts 𝐶𝑐 and 𝐶𝑖 by adding the following 

inequality constraint to 𝒫𝑐: 
 

2 𝑐𝐫 𝑐𝐫𝑖 = ‖ 
𝑐𝐫𝑖‖

2  (22) 

 

This constraint restricts the validity region of 𝐶𝑐 by cropping a half-space defined by the hyperplane orthogonal to 𝑐𝐫𝑖 
at 𝑐𝐫𝑖. Fig. 5 shows the new chart 𝐶𝑖 in red and the restricted region in blue. Importantly, this boundary constraint is 

applied to every chart in the atlas 𝐴 for which 𝐪𝑖 is a valid point, i.e., for every chart 𝐶𝑗 where 𝑗𝐫𝑖 = 𝜙𝑗(𝐪𝑖) is within 𝒫𝑗 . 

 

This iterative process continues until all vertices of every polytope 𝒫𝑐  are contained within their respective hyperballs 

ℬ𝑐 , at which point all charts are considered bounded and the atlas fully covers the self-motion manifold. 

 

Additional constraints, such as joint limits or obstacle avoidance, can be incorporated by introducing further conditions 

((C3), (C4), etc.) in the same manner as (C1) and (C2), ensuring that all generated points 𝐪𝑖 remain within the feasible 

region defined by these constraints. 

 

5. Discussion 

 

In this section, we compare the performance of the three methods for computing self-motion manifolds: the sweeping 

method, the continuation method, and the cellular automata method. Sweeping and continuation methods have been 

implemented in Python, on a machine with an Intel Core i7-9700F CPU and 32 GB of RAM. The cellular automata 

method has not been implemented by us, but we have used the results provided in [11] for comparison. 

 

The cellular automata (CA) method for computing self-motion manifolds, as proposed in [11], models the robot’s 

configuration space (C-space) as a grid of high-dimensional elements. Instead of exhaustively sampling or clustering the 

entire C-space, the method uses a grid-based evolution search strategy inspired by cellular automata. Each grid element 

represents a continuous region of joint space, and its state evolves according to simple transition rules based on whether 

it contains part of the self-motion manifold. The computation begins by identifying a set of seed elements that intersect 

the manifold. These elements then propagate the search to their neighbours, iteratively expanding the set of elements 

identified as containing the manifold. This process continues until no new elements are found. 

 

For consistency and fairness in our comparison, we sought to visually match the resolution used in [11], as the original 

work did not specify the discretization parameters. In our implementations of both the sweeping method and the higher-

dimensional continuation method, we carefully selected comparable resolutions. Specifically, the sweeping method was 
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implemented by discretizing each axis of the redundant joints (𝑞4, 𝑞5) into 𝑁 = 300 points. The continuation method was 

executed using the following parameters: 𝜃 =
𝜋

6
, 𝜀 = 0.1, 𝜎 = 0.3. 

 

Fig. 6 illustrates the two-dimensional self-motion manifold computed by each method for the studied 5-DOF robot 

when the end-effector is at the position 𝐱 =  [0.2, 0, 0.3] m. Fig. 6(a) and Fig. 6(c) show the results of our implementations 

of the sweeping and continuation methods, respectively; while Fig. 6(d) shows the result of the CA method, directly taken 

from [11]. Note how the manifolds produced by the sweeping method in Fig. 6(a) present regions of discontinuities in the 

areas where the manifold is tangent to the horizontal lines defined by fixed values of the redundant joints (𝑞4, 𝑞5). A 

solution to this problem is to increase the resolution, which produces the results presented in Fig. 6(b) when 𝑁 = 6000. 

 

 
 

Fig. 6. Results of the different methods for computing SMMs: sweeping (a-b), continuation (c), cellular automata (d).  

 

Table 2 shows the computation times for each method, where the CA results are directly taken from [11], and the 

sweeping and continuation times are averaged over 50 runs. The results of our comparative study reveal distinct strengths 

and limitations for each method of computing self-motion manifolds in the 5-DOF robot. 

 

Method Runtime (s) Number of points 

Sweeping [10] 0.46 14,4648 

Sweeping [10] (𝑁 = 6000) 165.46 5.7 × 107 

Higher-dimensional continuation [8] 11.9 2,227 

Cellular automata [11] 11347 N/A 

 

Table 2. Performance of the different methods for computing SMMs. 

 

The sweeping method stands out as the fastest approach by a significant margin, with computation times orders of 

magnitude lower than the other methods. Moreover, it is able to identify all disjoint self-motion manifolds present in the 

configuration space. The primary limitation of the sweeping method is that it does not densely sample regions where the 

manifold is tangent to the horizontal lines defined by fixed values of the redundant joints (𝑞4, 𝑞5). This can result in sparse 

point clouds in certain areas of the solution set. However, this drawback can be mitigated by increasing the resolution of 

the sweep or by employing redensification strategies, which we propose as a direction for future work. Another drawback 

is the requirement of deriving an analytical solution of the inverse kinematics, as done in Section 2. 

 

The higher-dimensional continuation method offers a more uniform and dense coverage of the self-motion manifold. 

Unlike the sweeping method, it does not require an analytical solution to the inverse kinematics; it only relies on the 

Jacobian, which can be computed numerically if necessary. This flexibility comes at the cost of increased computational 

time, although it remains substantially faster than the cellular automata approach. A notable limitation of the continuation 

method is that it only explores the manifold connected to the initial seed configuration, and cannot identify all disjoint 

manifolds without multiple initializations. 

 

The cellular automata (CA) method is the slowest by a wide margin, with computation times exceeding 10,000 

seconds. While it is capable of identifying all disjoint self-motion manifolds, the computational cost is prohibitive for 

practical applications. The method's exhaustive grid-based search ensures completeness, but the trade-off in efficiency is 

substantial. We recommend its use when the identification of all disjoint manifolds is paramount, but no analytical 

solution to the inverse kinematics problem is available and computation speed is not critical. 

 

6. Conclusion and Future Work 

 

This paper has presented a comparative evaluation of three representative methods for computing two-dimensional 

self-motion manifolds in a 5-DOF redundant robot: the sweeping method, the higher-dimensional continuation method, W
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and the cellular automata approach. Our results demonstrate that the sweeping method is the most efficient, providing 

rapid identification of all disjoint manifolds with minimal computational cost. The continuation method, while slower, 

offers dense coverage of the manifold and does not require an analytical inverse kinematic solution, making it suitable 

for complex robots where only the Jacobian is available. The cellular automata method, although exhaustive and complete, 

requires prohibitive computational times when compared to the other methods. 

 

Future work will focus on addressing the limitations identified in each method. For the sweeping approach, we plan 

to investigate redensification strategies to improve sampling density in regions where the manifold is tangent to the 

discretized horizontal lines. Additionally, we will explore new methods for computing self-motion manifolds that 

combine the strengths of the studied methods, while addressing their issues. 

 

Overall, our study provides guidance for researchers and practitioners in selecting appropriate tools for redundancy 

analysis and exploitation in industrial robotic systems, and lays the groundwork for further advances in efficient and 

comprehensive computation of self-motion manifolds. 
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